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CHARACTERISTICS OF THERMAL RADIATION IN
ISOTHERMAL AXISYMMETRIC CAVITIES

V. P. Simonoy UDC 536.241

Radiative heat transfer is investigated in an isothermal axisymmetric cavity with a spherical end and a
lateral surface which is the frustum of a cone. Figure 1 shows a schematic diagram of the cavity. In deriving
the system of integral equations describing the radiative energy transfer in the cavity it was assumed that the

radiation and reflection processes are diffuse and that the emissivity € and the temperature T of the cavity
walls are constant,

The solutions of the system of equations are universal and are obtained by a numerical method described
in [1]. In the investigation it was assumed that o, = o, = a, and cavities were considered with o = —20°, 0°, 20°;
/R = 0.5, 1.0, 2.0; € = 0.3, 0.5, 0.7, 0.9.

In addition to the local values of the apparent emissivity ez = B/6 T? for cavities having € = 0.3, the effec-
tive emissivity eeff = Q/TR¥6 T4, which determines the effect of the cavity, is given as a function of the apex
angle of the cavity a for various € and L/R and as a function of the length of the conical portion of the cavity L/
R for various ¢ and . It was shown that even relatively short cavities (/R = 2.0) have practically a maximum
effect from the point of view of the energy loss of the heated surface. For e = 0.3 the value of ge¢r does not dif-
fer by more than 10% from the corresponding value for a cavity having the shape of a pointed cone (L/R — =},
For larger values of ¢ this deviation becomes less than 1-2%. The results of the investigation described in the

article permit rapid estimates of the effect of a cavity. This is important in calculating the energy loss of a
rough heated surface.

Fig. 1. Schematic diagram of

cavity.
NOTATION
€ is the emissivity of cavity walls;
T is the temperature of cavity walls;
B is the flux of effective radiation;

£, is the local apparent emissivity;
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eeff Is the effective emissivity;

a is the Stefan— Boltzmann constant;

Q is the total heat flux radiated by open end of cavity;
o is the apex angle of cavity;

L is the length of conical portion;

R is the radius of base of frustum of cone;

R*  is the radius of open end of cavity.

LITERATURE CITED
1. V. P. Simonev, Inzh.-Fiz, Zh., 217, No. 2 (1974).

Dep. 1916-176, April 13, 1976.
Original article submitted April 20, 1974.

MASS TRANSFER IN A THREE-PHASE SYSTEM

G. A. Aksel'rud and A. I. Dubynin UDC 66.015.23

Heterogeneous reactions in the diffusion region [1] which are accompanied by the release of products, one of
which dissolves in a liquid and the other of which is released as a gas, are discussed,

If the liquid is quiescent, the quantity qg/pgwc plays the decisive part; here qg/pg is the rate of gas for-
mation, while we is the speed of natural convection. If qg/,ogwC is sufficiently small, the effects of bubble pro-
duction are negligible, and the mass-release coefficient k,. can be derived from standard relations for natural
convection (in the dissolution of a solid in a liquid without the formation of gas). As qg/pgwc increases, it plays
an increasing part in determining the mass~transfer rate; conditions are set up in which the gas comes to domi-
nate the process.

The following equation has been derived from a survey of the experimental data [1] oh mass-transfer
kinetics for some metals and carbonates reacting with acids in quiescent liquids:

kr 15 [—"g—]°‘“. 1)
P‘gwc

ky
If the motion of the liquid with respect to the dissolving solids is of forced type, the mass-transfer rate is
governed by the perturbations in the diffusion layer consequent on the gas release, as well as by the perturba-
tions due to the force-convection. If the reagent concentration is small, the mass-release coefficient approaches
the values calculated from the standard formula for convective mass transfer:

Nu=081Pr VRe. @)

In the case of bubble release, the laws of mass transfer may be described by an equation of the type

FR=ER_ _f (Re), @)
kg
which for these conditions reduces to the form
_k&f_’”*._ =0.013Re"4". &)
kp
NOTATION
q is the mass flow density;
o is the density;
k is the mass-release coefficient.
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Indices

g is the gas;

R is the reagent (acid);
r is the reaction products (soluble solids);
* is the parameter determined for natural convection;

*x is the parameter determined for a quiescent liquid.

LITERATURE CITED

1. A. L. Dubynin, "Mass transfer in a solid-liquid system complicated by release of a gas phase,” Candi-
date's Dissertation, L'vov (1974).

Dep. 1913-76, March 22, 1976.
Original article submitted March 25, 1975.

CALCULATING HEAT EXCHANGERS OF THE CROSS-FLOW
TYPE WITH A FLUIDIZED BED OF MATERIAL

Yu. P. Nekhlebaev, I. A. Dorogoi, UDC 536.244
D. T. Bondarenko, and V. V. Koney

The organization of heat and mass transfer in a heat-exchanger with a cross-current (HCC) of the fluidiz-
ing medium and material (FMM) is more efficient than in one of the mixing type. A computing relation was
derived in [1] for determining the current temperature of the FMM along the HCC for a constant temperature
of the fluidizing medium under the lattice of the HCC in the absence of heat absorption in the bed of material.

When heat absorption takes place in the bed as a result of the occurrence of endothermic reactions (the
absorption being identical all along the apparatus), the following equations are obtained for determining the
average temperature of the fluidizing medium and material at the exit from the HCC:

= 9 . fe .. __4q I —exp(—W)
W W w !

o .9
by =f— c(;’/ ‘T('&l_flT CW/)eXP(—W)'
T \

N
In this paper the combined operation of two HCC is considered in the case of complete mixing of the fluidizing

medium under the lattice of the first HCC and also in the absence of mixing. Equations are derived for deter-
mining the current temperature of the FMM along the first HCC.

The average temperature of the FMM is calculated after traversing two preheating zones of a fluidizing-
bed lime kiln. The results are explained on the basis of a redistribution of the temperature of the media taking
part in the heat transfer. Recommendations are made as to a method of allowing for the actual distribution of
the fluidizing medium under the lattice of the HCC for various degrees of heat absorption in the bed of material,

NOTATION
ey is the specific heat of fluidizing medium;
q is the specific flow of heat to the endothermic reaction taking place in the bed of material;
t is the temperature of the fluidizing medium at the HCC entrance (inlet);
t, is the average temperature of the fluidizing medium at the HCC exit {outlet);
W is the ratio of the water equivalents of the fluidizing medium and the material;
1, S are the temperatures of the material at the HCC inlet and outlet, respectively.

LITERATURE CITED

1. V. M. Dement'ev, Thermal Calculations of Multizone Furnaces with Fluidized Beds [in Russian], Metal-~
lurgiya, Moscow (1971).
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Dep, 1927-76, April 13, 1976.
Original article submitted December 8, 1975.

KINETICS OF DIELECTRIC DRYING OF CARDBOARD
AND PAPER

V. M. Minakovskii UDC 676.2.052.7

Results are given on the drying of specimens of cardboard (grade 350) and wrapping paper [GOST (All-
Union State Standard) 7438-55] of size 215 x 130 mm heated by currents at frequencies of 64.7-66.3 MHz in a
tubular capacitor connected to a high-frequency oscillator based on a -GU-48 triode.

The curves clearly reveal the initial heating period (up to 18% of the total drying period), the period of
constant drying rate, and the period of falling drying rate. Rapid and clearly visible steam release from the
specimen starts at the middle of the heating period and continues not only in period I of the drying, but also, in
part, in period II. The structure of the cardboard or paper favors the production of steam within the volume,
When the field is switched off, the steam release ceases almost instantly, which indicates that the excess pres-
sure relaxes completely before the specimen has cooled appreciably.

The drying rate N during period I for specimens of cardboard increased linearly with the initial water
content W, from Wey,; up to Wy = 190%; the rate of increase in N was independent of the field strength E in the
material. Also, N was independent of W, for W = 19(¢f. Under comparable conditions, N for paper was larger
by factors of 5, 5.65, and 6 than N for cardboard, respectively, with plate voltages U = 2.04, 2.33, and 2.62 kV,
while the drying rate in period I, as referred to the total geometrical surface area of the specimen, was higher
for the cardboard and varied from 3.11 kg/m?*h (paper; W, = 159%; U = 2.04 kV) to 13.42 kg/m?+h (cardboard;
W, = 246%; U = 2.62 kV).

The drying curves for period II are divided into two parts by the point Wey 4; for cardboard with W, >
Wer,;, the values were Wer,; = 60% and Wer , ~ 30-32%, these being independent of W and of the mode of dry-
ing. If W, was close to Wy ; or less than it, Wer,; decreased as W, decreased (to Wer,, =~ 18% for Wy = 69%),
while remaining mdependent of the mode of drying. In the case of paper, Wer ; = 96% for W, = 159%, being in-
dependent of the mode of drying, while W¢r , ‘increased linearly from 46.5 to 58% as N increased from 5.3 to
12% sec™!

The drying coefficients K, and K, increase linearly with N; the relative drying coefficients »; and =, are
independent of the mode of drying for W, > Wcr,; but increase as W, falls. In the case of cardboard, =, for
W, < 6%% is dependent on the mode of drying, and it decreases as N increases. Drying curves calculated from
K; and K, agree well with the recorded curves.

Speciinens uniform in water content showed no buckling throughout the drying, which is a difference from
infrared and nozzle forms of drying.

The relationship of N7 to N and the generalized drying curves as W in relation to Nt confirm Krasnikov's
hypothesis on the dielectric drying of cardboard in periods I and both parts of II, as well as for paper in period
I and the first part of period 0.

The N = N(U?) curves indicate that the effects of E on the water-loss coefficients for cardboard and paper
increase as W, falls,

If a specimen uheven in water content is dried, the unevenness in the water distribution becomes less dur~
ing period II, especially during the second part of this period. Formulas are given for estimating the equaliza-
tion of the water content.

Information on the structure and electrbphysical parameters of cardboard and paper can be used with
concepts on the water-transport mechanism to explain all the observed trends in the dielectric drying of card-
board and paper.

Dep. 1846-76, February 2, 1976.
Original article submitted December 20, 1974.
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CURRENT-CARRYING CAPACITY OF A
CRYOGENIC LEAD

Yu. L. Buyanov and A. B. Fradkov UDC 536.483

Measurements have been made on various types of copper lead used for supplying current to supercon-
ducting magnets.

If the lead has to carry a current that varies with the working conditions (the maximum current is sup-
plied for a time small compared with the total working time) or if a superconducting magnet is operated in the
frozen-field mode,itis advantageous to reduce the current-carrying cross section, since this reduces the heat
leak to the liquid-helium cryostat when the current is small or zero.

Reducing the cross section increases the Joule heating and thus the temperature rise in the overload
state; lead design thus requires a knowledge of the temperature distribution, in particular, the maximum tem-
perature Thot = ¥(I) , which determines the permissible current.

The method of [1] for calculating the temperature distribution for I > I, on the basis of ideal heat trans-
fer between the lead and the surrounding gas appeared inapplicable for this type of lead on account of the dif-
ferent trends in the temperatures of lead and gas when the current is high.

The main interest attaches to the temperature in the part of the lead that approaches the melting point
Tmp most rapidly. Experiments indicate that the temperature rises very rapidly with the current (an increase
in current of only 20-25% over I, may cause the lead to fail). It has also been found that heat flows from the
hottest part to the outer section of the equipment, as well as into the cryostat, if that part has a temperature
above room temperature, and then the hottest part is not at the input flange of the cryostat but at a distance of
about 0.2 of the total lead length, which agrees with data for tungsten and molybdenum leads [2].

It has also been found that for copper leads, which have Tmp = 1356°K, the observed Thot = L(I) are fitted
closely by

Thor= 300 exp {1.51 (7 — T300)/({np— F300)]- @)

The following empirical relation applies for the actual cooling conditions, which define the limiting cur-
rent at which the lead melts:

Ip=1008%°. @)

A theoretical relationship has also been derived for the permissible current in the general case.

The total amounts of heat introduced by the leads working under overload conditions have been calculated
for the magnet supply time and for the working time and compared with the heat influx due to leakage along the
leads, the latter as optimized for the maximum working current; it is found that the use of overloaded leads is
advantageous for Twor/Tsup > 8.

NOTATION

Thot is the temperature of the hottest part of the lead;
I is the current;
Lo is the current at which the hottest part of the lead reaches room temperature;
Imp is the current producing a temperature equal to the melting point;

is the current-carrying cross section;:
Twor is the magnet working time;
Tsup is the magnet supply time,

LITERATURE CITED

1. P. Thullen, Adv. Cryog. Eng.,l&i, 292 (1971).
2, Yu. L. Buyanov and I. Yu. Shebalin, Prib. Tekhn. ﬁksp., No. 6,181 (1974).
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THERMODYNAMIC PROPERTIES OF GeSe IN
SOLID AND LIQUID STATES

S. M. Rasulov and R. A. Medzhidov UDC 549,31

In view of the possible practical applications of germanium monoselenide (GeSe) and the occurrence of a
type 1I phase transition in it, it was of interest to investigate its thermodynamic properties. The thermody-
namic properties of GeSe in the temperature range 55-300°K have been investigated by V. M. Zhdanov. The
literature contains no data for temperatures above 300°K.

In the present work the thermodynamic properties of GeSe in the range 0-820°C were investigated. The
enthalpy of a specimen was experimentally measured by the method of mixtures.

The enthalpy data were used to construct interpolation equations, whose coefficients were determined by
the least-squares method. The relationships between the thermodynamic functions and the enthalpy expressions
were used to find equations for the specific heat, entropy, and thermodynamic potential.

The obtained data showed that the main theoretical relationship above the Debye temperature (Dulong and
Petit law) becomes invalid. According to this law the specific heat at constant volume, per gram-atom, is a
constant: 3R = 6 cal/g-atom-deg. Deviation of the specific heat of GeSe from the Dulong and Petit Law occurs
above 20°C and increases with increase in temperature. The following possible reasons for this deviation are
suggested.

1. The value of the specific heat at constant pressure (cp), and not of the specific heat at constant volume
(cy), were found experimentally.

2. The anharmonicity of the vibrations makes a contribution to the specific heat,

3. The electron concentration is a sensitive function of temperature, and the energy required for the ap-
pearance of conduction electrons makes a substantial contribution to the specific heat. Free electrons, whose
energy changes with temperature, have an insignificant effect on the specific heat.

At the temperature of the type II phase transition (tpt = 620°C) and at the melting point {t,, =670°C) there
is an anomalous change in the thermodynamic properties.

The latent heat and entropy of melting were found and were 2723 + 16 cal/g-atom and 2.890 + 0.017 cal/
g-atom -deg, respectively.

After melting the enthalpy increases linearly with increase in temperature, while the specific heat re-
maing constant.

Dep. 1911-76, March 30, 1976.
QOriginal article submitted August 13, 1975.

STEADY-STATE THERMAL CONDUCTIVITY OF A
PLATE WITH A VARIABLE
HEAT-TRANSFER COEFFICIENT

S. I. Prokopets and S. B. Tishechkin UDC 536.24.02
The study of heat-conduction problems involving a variable heat-transfer coefficient is now receiving
great attention. In most of the known studies the heat-transfer coefficient varied with time or ambient tem-

perature, There are far fewer studies in which the heat-transfer coefficient depends on the coordinate. Yet
the last case is of theoretical and practical interest.
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The solution of the following boundary-value problem is considered:

Pt (cwar<to, 0Ky<h), (1)
oxt ' oyt
t =T, —const at y=0, 2)
}\,a—t_g-:x(x)tzo at y=1, (3)
dx
i_.» 0 as X >~% oo. (4)
0x
Assuming that we can put
a(x) = o + 804y (%), {5)
where
[ A, xiLa,
() = 10, Ixi>a, ®)

and € is a small numerical parameter (e « 1), we seek the solution of problem (1)-{4) in powers of & by the
perturbation method:

HE M=t +eta G M+ (S W)+ (N
For a(x) = o, the solution has the form
to () = Ty — Bip Ton (1 +— Big)~1 = (n). (8)

Applying the complex Fourier transform in £ to the problem of the first approximation and using the theory of
residues, we obtain

\ sin (vo 1) -sh (bvy) exp (vnk) .
s —_ 4 —b .
G = 24D E v [(1 = Big) cos v — vy sinvg] (=< ) 9
Dexp(—veb)  AD
(8 W= 2AD \1 Sin (va1):Ch () €xXP (-~ V) hGE <b), 10)

A Vi {Vp sin vy — (1 = Big) cos Vn] 1--Big

n=1

sin (van)-ch (v,b) exp (— va)
vy [vp sin vy, — (14-Biy) cos vy ]

Here ¢{ = x/h, n=y/, b =a/h, D = {(1), and v, are the roots of the transcendental equation tan v = —vBigh

The formulated problem (1)-(5) was also solved by electric simulation on an R-network analog computer.
A comparison of the results obtained analytically and by electric simulation for a wide range of geometric and
thermophysical parameters indicated a satisfactory agreement by the first approximation (€ = 0.093) when 5-6
terms of series (9)-(11) were retained. The difference did not exceed 10%.

Dep. 1915-76, April 22, 1976.
Original article submitted September 24, 1975.
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NUMERICAL SOLUTION OF SYSTEMS OF VOLTERRA INTEGRAL
EQUATIONS OF THE SECOND KIND ARISING IN PROBLEMS
OF HEAT CONDUCTION THROUGH MULTILAYER MEDIA

A. M. Aizen and I. S. Redchits UDC 536.21:518.0

The problem of unsteady heat conduction through multilayer media can be solved by reducing the original
problem to systems of linear Volterra equations of the second kind of a special form.

An algorithm is presented for the numerical solution of such systems. In this case the kernels of the
Volterraintegral equations have singularities, becoming infinite at the right-hand ends of the integration
intervals, Therefore, ordinary numerical methods of solution do not suffice,

The systems of Volterra integral equations of the second kind of the convolution type under consideration
are solved by the method of finite sums based on the use of the modified Newton— Cotes quadrature formula,
taking account of weight.

The integrals are split into elementary intervals and then the modified quadrature formula is used. Since
the elementary intervals are small, their end points are taken as nodes. In this way the numerical solution of
the system of integral equations is reduced to the solution of a system of linear algebraic equations which can
be accomplished completely on computers of common types.

The procedure discussed is applied also to the solution of a single Volterra equation of the second kind
obtained in the problem of unsteady linear heat conduction through a two-layer wall, A concrete example is
solved.

Dep. 1924-76, April 13, 1976.
Original article submitted March 25, 1975.

SOLUTION OF JOINING PROBLEM FOR MULTILAYER
MEDIA BY USING LAPLACE TRANSFORMS

K. V. Lakusta and M. P. Lenyuk UDC 517.946

We consider a finite rod with a thermally insulated lateral surface consisting of n different homogeneous
materials with a continuous distribution of heat sources of density fj(x, t), an initial temperature__(pi(x), an ini-
tial time rate of change of temperature yj(x), and temperatures on its ends z,(t) and z,(t) 4 =1, n). Each ma-
terial is characterized by its thermal conductivity A;, specific heat cj, density yj, and period of relaxation of
thermal siresses 1.

If we denote the temperature of each layer by Uj(x, t), we obtain the following mathematical problem: in the
domain

n
D= UD;, Di={{t, 1), 0<t<T, hij_;<x<h; i=l, n},
i=1
find the bounded sufficiently smooth solution of the system of equations

U;
or

al; U,
Al atl —a? ax; =fi(x 1),

5
satisfying the initial conditions

aU; N
Ulhmg =91 (9 —5,|,_ =0 ® ¢=1 ),

the boundary conditions

U1|x=h, =2 (); Un|x=hn =zp (1)
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and the joining conditions
Uilyn, Uigalymn, = o (8),

oU; 0Ui1y .
. —k; =B; (), =1, n-—1).
i o% by Rit1 ox Py Bi(r), @ )

i

We have introduced the following notation:

is the rate of propagation of heat.

A procedure for solving the problem by taking Laplace transforms with respect to { is presented and ap-
plied to the study of the temperature distribution in two butted finite rods. The solution for an n-layer rod
which is infinite in one or both directions is obtained from the solution of the joining problem for an n-layer
finite rod by setting the controlling coefficients in the solution equal to zero and replacing the boundary condi-
tions by

lim Ug (¢, x) =0; Hm Uy (¢, x) =0.
N x>t

Xr—o0

In the limit as b; — 0 the ordinary parabolic temperature distribution is obtained and as ¢j -—- 0, a purely wave
temperature distribution in an n-layer one-dimensional body.

LITERATURE CITED
1. A. V. Ivanov, Inzh.-Fiz. Zh., 13, No. 2 (1958).

Dep. 785-76, March 9, 1976.
Original article submitted January 20, 1975.

STRAIGHT-LINE METHOD IN THE DERIVATION OF
APPROXIMATE ANALYTIC SOLUTIONS TO
PROBLEMS IN THERMAL CONDUCTION

K. G. Omel'chenko and V. A. Shiparev UDC 536.2.023

The straight-line method has been used to derive approximate analytical solutions for heat conduction by
reducing a system of ordinary differential equations to simple recurrence relations; the conduction equation

0%u ou

e  a L)

O<x<f, O<i<ity
is replaced by the system

62 n
%r—un-!—umﬁoy I<n<m,
(2)
tk X
up=u(x, nh), h= ol 2= Ver
The solution to (2) takes the form
2
Up = — j ty 1 (y) sh(z—y) dy-+Cyexp z4-C, exp (—z), (3)
0

where u, (n = 0) is determined by the initial condition for (1), namely, u, = counst,

A distinctive feature of (3) is that

n—1
Up_y= Z Ay —12% exp 2-+by g 2% exp (—2),
0 .
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n
Up= g ap,n 2% exp 2 + by p 2k exp (— 2). (4)

Here the coefficients ag n and by n are related by the recurrence relations

ap n= —_‘1 ap —"‘_‘k+l ap
n— -1,n—-1 — +1,7
’ 2k ’ 2 !
(5)
1 k-1 :
bin= S5 br-in-1+ T tasyn, I<k<n

The boundary conditions for (1) are used to determine @ n and by n; boundary conditions of the following general
form are considered:

F}
at x=0, 2=0, Ag(t) utBy(®) “a‘zi 1C, (1) =9,

du (6)
x=8, 2=8;, A (t) ut+B. (D) ’a’z_ +Cy (8) =0

for the case of discontinuity in ¢ and a moving boundary.

In all these cases, the solutions are defined by (4) with (5) and the corresponding boundary conditions
for ayn, by n; this method can be used also with more complicated heat-conduction problems.

NOTATION

is the temperature;

is the thermal diffusivity;
is the time;

is the linear coordinate;

is the layer thickness;

is the total time;

is the time step;

is the number of time step.

;3!3"7:_"‘0»1& LS B =1

Dep. 1923-76, March 30, 1976.
Original article submitted December 1, 1975,

SOME ASPECTS OF LIQUID — VAPOR MASS TRANSFER

I
E. V. Veitsman UDC 532.6+536.71+539.6

A pure liquid in contact with its own vapor can be described by the following equation for the one-dimen-
sional case [1] in terms of the mass flux J of material in the interface region:

+
A[F (x, Hx] _(ﬂ

J=a'|F(x n—
¢ [ * 9 A0t op )T,t,,,-:,,

.grad p (x, t)] . (e8]

If (1) is to be used in practice, relationships of the form p = p(x, t) and ¢ = P (x, t); —zp)‘( = F(x, t) must be
known.

These functions appear in a system of equations that describe the microscopic forces in the interface:

% 9 (%% e _&)
= oy T o) @ @)

B R A ®
e = 4nkp (x, 1).

Instead of (2b) one can use an equation of the following form:

7 W _ *
o2 nor 4nkp (x, ) exp (:F n ) .
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It is very difficult to solve (2), but the difficulties can be overcome for the steady state by using the con-
dition 60 = 0, i.e., the first variation of the surface tension is put as zero. Then the function p = p(x) takesg the
form given in (2], while ¢(x, t) = —4rkA?p(x); if the deviation from the stationary state is small, then ¢ = (x, t) =
—4rkA%p(x, t).

+ o+
The expression for ﬁ for the material in the interface region takes the form p =y, + RTInf(p) - p:
ilpy= C—eXP (ap); o = 4:kA2/RT; pyexp (091) = prexp (0pg). 3)
p

The function f(p) is called the inteﬁphase activity coefficient. It characterizes the effects of macro-
scopic forces in the interface region on u.

Theoretical studies on mass transport in this region have provided the following results: 1) the equation
of state for the material in the interface region (for the following systems: pure liquid—-vapor, pure solid
—vapor, equilibrium and nonequilibrium stationary states); 2) an expression for the energy of the intermolec~
ular (interatomic) interactions in the liquid ¢, and gas ¢,:

AL = 83%0/RT (3 — 03) 11 (p/p0), )
RT In (pa/p1)
Yyo) =— 02— 01 P2y (5)

Expressions (4) and (5) are readily verified; the values of AL for T appreciably less than the critical
temperature Tcr lie in the range from 107° to 10”7 cm for many different substances (from liquid helium to
liquid platinum), while AL tends to increase with the complexity of the molecular structure. Also, AL — 0 for
T — Tep.

The value of ¢, is in the region of several keal/mole for various liquids (T « Tey); at T = Tay, (5) be-

comes § = —RT (after resolving the indeterminacy).

The latter formula readily gives a quantity @, which at Ty, is analogous to the quantity appearing in the
van der Waals equation, The van der Waals constant is a = 9/8RTcrvcr, while the new quantity at T, takes the
value acy = RTapvVer.

cr

NOTATION
a' is the phenomenological coefficient;
o is the density;
Pis Py are the densities of liquid and gas;
i is the specific chemical potential;

Tyyand 7, are the components of the stress tensor for the interface region (normal and tangential);
v is the speed of material at point x;:

Vg is the characteristic speed;

i is the potential (J/kg) due to the intermolecular forces in the interface region;

D is the mass-transport coefficient;

A is the screening coefficient (m);

k is the constant (m¥/kg * sec?);

C is the constant of integration;

Ver is the specific volume of substance at T, .

LITERATURE CITED
L4
1. E. v. veitsman, Inzh.-Fiz. Zh., 25, 159 (1973).

’

2. E.V. Veitsman, Ingh.~Fiz. Zh., 25, 742 (1973).

Dep. 1922-76, March 30, 1976.
Original article submitted November 25, 1975.
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EFFECT OF TEMPERATURE DEPENDENCE OF
RESISTIVITY OF A CYLINDRICAL
CONDUCTOR HEATED BY A CURRENT ON

THE  TEMPERATURE, CURRENT, AND
ELECTRIC FIELD DISTRIBUTIONS

R. S. Kuznetskii UDC 538.56

The steady-state distributions of temperature and electric field in a cylindrical conductor r = 1 of radius
ry heated by a current of frequency w, with the electric vector at the surface e, collinear with the generators of
the cylinder, having a thermal conductivity A, an absolute magnetic permeability u, a temperature coefficient
of resistivity @, and with surface heat transfer, are described by the system of nonlinear differential equations

PR Fr ) =—¢) ple"+rley=in%; t() =t'(0)=¢"(0)=0, e (1) =1, 09)]

where j = e/p and the temperature dependence of p is specified as p(t)' = kt + 1, Here r is the running radius-
vector; t is the temperature of the conductor measured from the temperature of its surface; p = p(t) is its re-
sistivity; p, is its dimensional resistivity at t = 0; e= ¢ exp(ip) and j = t (expig) are the complex amplitudes of

the electric field and the current density (i = €/p), relative, respectively, to the quantities rg, (eoro)z/[hPo(z —oa)s
D¢, €, and ey/pg; n = rpw/p, is the frequency criterion; andk= [(eoro)z/}\po] [a/(2 = &,)] isthe nonlinearity criterion;
6y =1lifn=0,and o =01if n = 0.

We are interested in the following functionals, which depend on the criteria n and k, for functions t(r) and
1
e(r) defined by Egs. (1), the maximum t(0) and the average temperature of the conductor (t) = S‘ td (r?), which
0
characterize the nonuniformity of the heating; the total relative change in resistivity dp=o0[t(0)]—1 = kt(0), which
is absent when k = 0; £(0) and 1 (0), characterizing the field and current skin effects, which are identical fork =
0; and the phase difference ¢(0) between the electric field and current density on the axis and on the boundary.

The dependence of the quantities under study on the controlling criteria k and n, shown graphically in
Fig. 1 for a eylindrical conductor, is qualitatively the same as for a flat conductor. The behavior of a cylin-
drical conductor differs quantitatively from that of a flat conductor with the same k and n in having appreciably
smaller values of t(0), (t), and ¢, larger values of (0}, ¢t(0), and ¢ (0), a considerably greater difference be-
tween {t) and t(0), and a weaker dependence of all these quantities on n,

AUNRC)
8p
?
2 /
757 v 10
23 § P
=0
]
‘EL\
a0 T 7
23
g08) =0, & o
23 )
0 1#
' 7 w ok

Fig. 1. Maximum (on the axis r = 0) t(0) and average tem-
perature (t) of a cylindrical conductor and the total relative
change of its resistivity dp as functions of the nonlinearity
criterion k for various values of the frequency criterion n.
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A theoretical analysis of the solutions of Eqs. (1) for k > max (1; n!) leads to the following asymptotic
relations:

0.58150 0.3360 <i>
=, <t>= =, ——
Ve VE £(0)

2)
2
lii? . ¢ (0) = —0.58801 T/"Te:.

These relations have the same general structure as those for a flat conductor, but with somewhat diffe rent con-
stants. For larger values of k the quantities t, p, t, ¢, and practically also e~ 1 become independent of the fre~

quency criterion n. In this case t,t, and ¢ are very small (the field and current are nearly real), but p is large;
these statements apply to t and p outside a surface layer of the eylinder of thickness of the order (kInk) V2,

£(0) = = 0.5778, 8p >~ 0.58150)'% ,

4
& (0) = 1 —0.080929 ~';—z 1, 1(0) =

Dep. 1925-76, April 15, 1976.
Original article submitted February 1¢, 1976.

TEMPERATURE, HEAT FLUX, AND ELECTROMAGNETIC
FIELD DISTRIBUTIONS IN A CYLINDRICAL CONDUCTOR
WITH A TEMPERATURE-DEPENDENT CONDUCTIVITY AT
LOW FREQUENCIES

R. S. Kuznetskii UDC 538.56

In a cylindrical conductor r = 1 of radius r; with surface cooling, the steady-state temperature and elec~
tromagnetic field distributions are described by the system of nonlinear differential equations

s . o 1 d d

Dt = — o (u* + %), Dy = -— n%ov, Dv==niou (Dz’r—?rd—r% )
where h = —in~%e ', with the following boundary conditions: u(l) = 1, vil)=td)=u(0) =v'(0) =t'(0) =0. Here r
is the running radius-vector, t is the temperature of the conductor measured from the temperature of its sur-
face, o = o(t) is its conductivity, o, is the dimensional conductivity at t = 0, q = —t' is the heat flux density, e =
u +1iv is the complex amplitude of the electric field, e, is the dimensional amplitude at the surface, and h = n™2
(v' — iu") is the complex amplitude of the magnetic field; these quantities are made dimensionless by dividing,
respectively, by ry, (o5/ A [(egry)¥ (2= dp)l, oedry/(2 — 6n), €, and oye,ry; 0 = ro,uw is the frequency criterion,
w is the angular frequency of the current, A and p are the thermal conductivity and absolute magnetic permea-
bility of the conductor; 6p=1if n=0 and 6p=0 if 0 = 0. From functionals of problem (1) are found the effec-
tive resistance R = (n%/20s)(v'/ le'}) | r =1 and the self-inductance L = (u/2n)(u'/ le'*) |,. _ ; per unit length of the ‘con-
ductor (s= TI'I'(Z)). We examine the behavior of the functions t(r), q(r), e(r), h(r), and functionals in the limit n << 1
(and n = 0), which turns out to be nontrivial for ¢' # 0.

Forn = 0 we have e =1, and we use a superscript 0 to denote the values of t(r) and q{(r) given by Eq. (1),
Dt + 0 =0 for t(1) = t'(0) = 0. For nonzero n<« 1 we find fort, q,lel, ¢ = arge, i, and y = argh:

1

fo {0 pdY, g g®— Y ul —nt, v — a2 (t°+n45. J~dr) ; 2)
r
' 1
g1 — nty + in2o, [e[:l—;—n‘l[y—? (t“)‘-’:,::l, P~ —n¥H <0, gl < 1; 3)
~ g0 2 i~ 00 = @] e ¥
B0t nd] indy, thj = g0 = mt|J 4 a0 b=t o <0 I, 4)

r

where q(r) = t%)'(x), "= o t?), J(r)= S’ [(0%)'¢— o’y Jrdr,and y(r), t(r) are solutions of the equations
0

Dy =190, y (1)=y’ (0) =0 u D% + (%)’ & = 00 [2y — (£9)2], 3 (1) = B’ (0) = 0. ®)
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Fig. 1. Dimensionless effective resistance R/R%and
self-inductance 1/L? of a cylindrical conductor as func-
tions of the nonlinearity criterion k at low frequencies
(small values of the frequency criterion n). Both di-
mensionless quantities are unity for k =n = 0. The
open curves give the analogous relations for a flat con-~
ductor.

We have for R and L, respectively,

1 1

( 4
2o R <o {1— s nwmm+wwn1un}:3qﬁ. )
R A V) x - v (1)
v ST or {1_ eoF “”'*2"”1”“”} Y @

In all the expressions obtained, and in Fig. 1, we take a(t) = (kt + 1)~!, wherek= (eoro)z(ao/o:) [a/(2— Op)lis
the nonlinearity criterion of the problem and ¢ is the temperature coefficient of resistivity. In particular, for
k > 1 we obtain the asymptotic rela‘ions

- k o 2
R~R l/m L=f 1 @)

where R = (g;s)~! and L= (8r)~'p correspond to k =n = 0. For the same k, the value of L/L? is two thirds as
large as for a flat conductor. Asymptotic expressions for guantities of the type (8), (9) hold independently of
the value of n as a consequence of their well-known self-similarity with respect to the criterion n for k »
max {1; n?).

Dep. 1926~76, March 30, 1976,
Original article submitted March 10, 1976.
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MEASUREMENT AND SIMULATION OF THE
MELTING OF SCRAP STEEL IN
MOLTEN IRON

M. Ya. Medzhibozhskii, S. M. Grigorenko, UDC 669.18:621.745.55
L. I. Khiish, A. A. Lykin,
and L. V. Rebrov

The experiments were performed with a laboratory induction frequency of capacity 20 kg with natural or
forced convection. Cylindrical steel specimens of diameter 10 mm and length 100 mm were immersed for a
set period in the molten steel, which had a constant composition, constant temperature, and steady air flow
rate. The carbon contents were 2-3.75% in the various runs, while the temperatures were —1400-1600°C and
the gas release rates were —0-1 m3/m?- sec,

It is found that the dissolution of steel group scrap occurs in two periods and four stages: period I is the
thermal one and includes the stages of melt freezing on the surface of the group, melting of the frozen layer,
and heating of the specimen; period II is that of rapid dissolution of the scrap. During the first stage, the rate
of penetration of heat into the specimen exceeds the rate of supply of heat from the melt, which results in layer
being frozen on the surface, During the second stage, the external heat flux exceeds the internal flux, so the
frozen layer melts again. In the third stage, the concentration in the surface layer falls suddenly B Cgyrl,
which causes carbon to diffuse from the melt into the specimen, the surface layer becoming carburized. The
scrap melts rapidly in the fourth stage.

It has been found that it is sufficient to carburize a very thin surface layer in order to cause rapid melt-
ing; the nonstationary diffusion problem has been solved to show that the carburization rate and the melting
rate for the surface layers are not limited by the melting rate as a whole, since the latter is restricted by the
heat and mass transfer in the liquid phase in stage 4.

These results have been used in a mathematical model for the coefficients of all stages; calculations on
the first two stages involve solving finite-difference equations for the nonstationary thermal conduction subject
to boundary conditions of the first kind in the presence of specimens varying in radius. Calculations for the
third stage involve nonstationary thermal conduction with boundary conditions of the third kind. The final sur-
face temperature of the specimen (tgyy) has been determined by solving the equations for heat and mass trans-
port (the latter for carbon) on the basis of the relation between the liquidus temperature and the carbon concen-
tration:

_ @ (f] —fkur) _ Be {[%CT 1 — [%Clsur} 612 a)
* Pser [Aar +Cser (1 —four )l {1%CH—[%Clgep ) ser
fur = 1536 — 54 [%Clgyr — 9-13 [%Clgur » (2)

where « is the heat-transfer coefficient, B, is the coefficient for carbon transfer from the melt to the surface
of the scrap, t; and tg, - are the temperature of the liquid and surface of the specimen, [%C] is the car-
bon concentration.

The duration of the fourth stage is defined by 7 = r/V,,, where Vy is the linear dissolution rate given by
(1). Calculations on the dissolution time for steel cylinders of diameter 200 mm give values close to those ac~
tually found for Martens and converter modes of steel production.

Dep. 1845-76, December 18, 1975,
Original article submitted July 23, 1975.
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INVARIANCE OF THE SHAPE OF TEMPERATURE CURVES

Yu. P. Kotel'nikov UDC 636.12

On the basis of an analysis of an approximate temperature solution it is shown that in the regular stage
under identical conditions of heat exchange at a surface the temperature curves for walls of different curvature
coincide rather closely at certain times. This property is called the invariance of the shape of temperature
curves. The times at which this coincidence of the curves occurs are called the equivalent times.

Analytical functions are obtained which determine the equivalent times for walls of different curvature,
both surfaces of which participate in heat exchange with mixed boundary conditions of the second and third
kinds.

It is shown that the property of invariance is confirmed by direct calculations using a strict analytical

solution,

Dep. 1920-76, May 7, 1976.
Original article submitted March 25, 1975.

EFFECT OF UNSTEADY HEAT CONDUCTION ON THE
RESULTS OF THE MEASUREMENT OF TEMPERATURE
AND LOCAL HEAT FLUXES WITH A

DYNAMIC THERMOCOUPLE

S. P. Polyakov and P. F. Bulanyi UDC 537.562.083

One of the largest errors in a measurement with thermocouples is due to the drainage of heat from the
injection into the thermocouple leads [1]. The principle of the measurement of heat fluxes is based on the re-
cording of the rate of heating of the thermocouple and the subsequent differentiation of the heating curve. To
calculate the departing heat flux one solves the equation of unsteady heat conduction by the method of the La-
place transform [2] with null initial conditions and boundary conditions of the second kind:

T 0)=0 T t)=T;[1—exp(—)]; T (0, H=0.
The solution obtained has the following form:
Tij . % =1 . . ) * i ) _1
T(x ')=Tj¢*{—’2;az}“‘§l‘ exp (— ) [‘”‘" (”"‘ V=)o { TV —‘V’“‘}T“”("VT)“” \7va +“/’”f]’

where

o

S exp (— y%) dy.
x
2Var

g% &1 ]
¢
e P
LA
a7 g2 o5t
Fig. 1. Heat flux into thermocouple leads (curve 1)

and relative error in measurement of heat fluxes
(curve 2). q, cal/em-sec; €, %; t, sec.

2
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The heat flux into the thermocouple leads is calculated by the Fourier law through differentiation of the
temperature distribution obtained. From the equation for the variation in heat content of the junction and the
equation for the departing flux one obtains the temperature reduction and the local heat fluxes at any time.

The results obtained are tested experimentally using thermocouples of different constructions. Unsteady
heating is accomplished in a high-temperature gas stream discharging from a plasmotron. The appropriate
calculation (Fig. 1) is made for the data taken from the experiment, with the values k = 3.26 sec”l, T = 2270°K,
@ = 0.055 cal/em?*sec *deg, and d = 0.5 mm. The experimental results obtained agree with the proposed theo-
retical equations for calculating the measurement errors.

NOTATION
a is the thermal diffusivity of thermocouple material;
k is the reciprocal of thermocouple time constant;
o is the heat-transfer coefficient;
T; is the temperature of plasma jet;
t is the time,
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THEORETICAL STUDY OF THE QUESTION OF USING
THE ELECTRORHEOLOGICAL EFFECT IN
REGENERATIVE HEAT-EXCHANGE APPARATUS

V. K. Gleb UDC 536.27

The case of heat exchange through a plane partition (Fig. 1a and b) is discussed.

An electrorheological suspension (a viscoplastic heat-transfer agent, subscript 1 and single superscript
prime) moves on one side of the barrier and a Newtonian liquid moves on the other. We assume that the outer
surfaces of the heat exchanger are adiabatic and we neglect heat transfer in the partition in the axial direction.
We will take as given and constant the densities p; and g,, heat capacities ¢, and ¢,, and heat-exchange coeffi-
cients oy and @, on each side of the partition which has a known thermal conductivity A;. Under these assump-
tions the mathematical formulation of the problem comes down to the system of equations

ot deyt’

0 —7¢)=w (zone I),
Hypy ¢ ! ) (1)
! B2 )y 2 ’ (zone IT) (2)
Hyp, o ’
I |
t P =0 (partition), (3)
AP,if2
wy =wy (E, pp, AP, m, n), w,= 22 —const.
12y
The boundary conditions can be represented in the form
a8 | g
_M_d-z—lz=_*2—=ag(t~e)1
d9 o e
-——7\,‘.7{2— Z=—6—=a1(e—'t).
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Fig. 1. Diagram of a heat exchanger
containing a plane partition with paral-
lel flow of heat-transfer agents f(a: direct
flow; b: counterflow).

Keeping in mind the quadratic dependence of the initial shear stress (1 = aE?) [1] and the influence of the
electrorheological effect on the velocity profile [2], as a result of the solution of the initial system of equations
we obtain a characteristic curve expressing the effect of an electric field on the efficiency of regenerative heat
exchange,

For direct flow

r—t KE 3al -
——— = ] 2 ——
-ty TR AP,
for counterflow
- t"i K 3al
= =1 - K,E?
t'—ty T AP,

The parameters K, and K, alloy for the geometrical dimensions of the channel and the rheological proper-
ties of the heat-transfer agents. We note that with an increase in the electric field strength the equalization of
temperatures of the heat-transfer agents occurs in a smaller distance, which improves the heat-exchange char-
acteristics of the apparatus and reduces the energy expenditure.

NOTATION
g', " are the temperatures of partition walls;
8 is the variable temperature of partition;
ti, t'{ are the initial temperatures;
) is the partition thickness;
L is the length of heat exchanger;
E is the electric strength;
m,n are the rheological parameters;
@ is the proportionality factor;

APy, AP, are the pressure drops.
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